Present Uses of the Fermilab Digital Signal Receiver VXI Module

Brian Chase, Paul Joireman, Philip Varghese RF Embedded Systems (LLRF) Group

Digital Signal Receiver (DSR)

- 8 Channel Digital Receiver VXI Module
- 65 MSPS AD6644 ADCs with AD6620 DDC
- ADSP21062 Floating Point DSP
- Sync modes in 2 channel pairs
- External sample trigger, front panel or back-plane for TBT mode
- Differential inputs on DB15 connectors or SMB option
- Daughter card for each channel pair with DAC and digital control
- 4 12 bit DAC front panel outputs
- 130 dB dynamic range at /square root Hz

DSR Block Diagram

DSR Block Diagram

DSR Single Channel

Ecool BPM Signal Flow Diagram

DSR Operational Status

- Main Injector
 - 53 MHz and 2.5 MHz radial position and beam phase detection for LLRF beam control loops
- ECBPMD (Recycler) Development System
 - H=1 (89 kHz) BPM processing on four detectors for over one year.
- ECBPM (Wideband) Operational System
 - 32 kHz and pulse mode processing on 19 BPMs

MI DSR RPOS Measurements

Beam/Gain Changes

Intensity Changes

Pulsed Mode v. Pbar

Stretched Wire Measurements

Move BPM Wire Along X-axis

Differential Non-linearity

Differential Nonlinearity along X-axis

Integral Non-linearity

Integral Nonlinearity along X -axis

Noise Measurements

100 Hz Bandwidth position data

Beam	Preamp	3σ X axis	3σ Y axis
Type	Gain	(µm)	(µm)
Electron	Low	34	37
	High	15	9
Pbar	Low	23	27
	High	16	14

Noise Measurements

5 Hz Bandwidth position data

Beam	Preamp	3σ X axis	3σ Y axis
Type	Gain	(µm)	(µm)
Electron	Low	5	2
	High	2	1
Pbar	Low	3	1
	High	1	1

ECBPM Hardware/Software Block Diagram

Application code (lib*.out)

Select high-level operational mode Implement and install Acnet callbacks Communicate with DSR using shared library functions (libdsr.out)

Connect FTP data to Acnet

DSR Shared Library (libdsr.out)

Represent DSR hardware as a software object

Provide interface to download DSP code

Reconfigure operating parameters of DSR using vector interrupts

SetNCOFreq Set*Gain

Provide interface to get FTP variable information from DSP

DSP Code (*.ldr)

Provide low-level communication with AD6620 DDC

Retrieve and optionally filter incoming signal

Calculate engineering variables, positions, intensities, other ...

Switch between operational modes NORMAL, PULSED, (TBT?)

ECBPM/DSR Software Functionality

ECBPM Software Metrics

• Language C/C++

• Operating System VxWorks 5.4

• Development Effort 3-4 "man-months"

• Lines of Code 10,000 (50 % COM)

- Functions
 - Manage DSR resources in VXI mainframe
 - Provide Acnet/MOOC interface for reading/setting and basic control of BPM system.
 - Provide high-level functionality to user to configure system for different operational modes

DSR Shared Library Metrics

Language

• Operating System VxWorks 5.4

• Development Effort 2-3 "man-months"

• Lines of Code 6700 (60 % COM)

Functions

- "Glue layer" to support communication between application software and DSR hardware.
- Encapsulate DSR hardware using "object-based" methodology.
 - Data: DSP hardware addresses
 - Methods
 - Creation/initialization
 - Informational DsrDump, DsrParamInfo
 - Client Vector Interrupts requests for DSP services

DSP Software Metrics

Language C and Assembly

Operating System N/A

• Development Effort 3-4 "man-months"

• Lines of Code 4700 (50 % COM)

- Functions
 - Configure hardware in a default initial state
 - Communication with DSR hardware external to DSP,
 DDC (AD6620) chip, VXI reset line, and hardware test points.
 - Low-level data processing and analysis including acquisition, filtering and engineering calculations.

TESTDSR Software Metrics

• Language C/C++ (LabView)

Operating System VxWorks 5.4

• Development Effort 2 "man-months"

• Lines of Code 3000 (60 % COM)

Functions

- Test low-level hardware functionality of DSR board
- Five test modes
 - Memory test, ADC test, Frequency sweep, *Trim Potentiometers*, Power Sweep
- Labview interface to control testing procedure

DSR, Tev Module Comparison

• Tev Module:

- 5 MHz BW
- Analog position processing
- Intensity triggered position sample once per turn.
- No turn marker used.

DSR:

- <<1 MHz BW
- Digital position processing
- Intensity triggered once per turn or pure narrow band
- Turn marker is optional

Process Bandwidth Considerations

- Wideband > 2 MHz
 - Good SNR
 - Systematic errors are hard to manage.
 - Signal looks good but may have average error
- Narrow Band
 - Good SNR with large fill factor
 - Even with poor SNR, average is correct.

Trigger Options with DSR

VXI backplane 8 Channel Trigger Bus (Revolution Marker, TCLK Events)